Nikon LC15Dx CMM Laser Scanner - 3D Laser Scanning

Nikon LC15DX CMM Laser Scanner

We are an ‘Nikon Authorised Reseller’ and also provide in-house training and support.

Thanks to the most advanced laser scanner technology, the LC15Dx is closing the gap with tactile probe accuracy. In tests comparable to ISO 10360 the LC15Dx achieved the accuracy expected when using a CMM with a tactile probe.

Nikons unique ESP3 technology maintains accuracy, speed and data quality by adapting the laser settings in real-time. Manufacturers gain a better appreciation of the dimensional quality of their products without compromising on cycle times.

Key benefits

  • Viable alternative to a tactile probe for an increasing number of high precision CMM applications.
  • Measure a wider variety of parts, geometry and materials more efficiently, including small details and fragile parts
  • A complete 3D visualisation of dimensional quality using Colour Mapping, with the detail necessary for further analysis.

download-brochure-icon-small

LC15Dx CMM laser scanner : New possibilities without compromise

Key-features[1]

High accuracy

The LC15Dx is a viable alternative to a tactile probe for an increasing number of high precision CMM applications.

Thanks to new solid state laser scanner technology, an innovative calibration method and high quality Nikon lens, the LC15Dx is closing the gap between laser scanner and tactile probe accuracy. In tests comparable to ISO 10360-2 MPEP and ISO 10360-5 MPEAL the LC15Dx achieved the accuracy associated with using a tactile probe on a CMM. Unlike a tactile probe, the LC15Dx uses non-contact 3D laser triangulation to measure the surface directly and eliminate probe compensation errors. The uncertainty and delay caused when a laser scanner is used before it has reached operating temperature, has been eliminated by a thermal stabiliser mounted inside the scanner body.Probing-error-test[1]

The LC15Dx probing error of 1.9µm (0.000075in) mirrors the accuracy expected when using a CMM fitted with a tactile probe. Likewise the Nikon scanner probing error test mirrors, as closely as possible, the equivalent ISO 10360-2 MPEP tactile probing error test, as depicted in the diagram to the right. Probing error determines the level of measurement uncertainty when measuring Form using a single probe head position. Normal convention dictates measurement uncertainty should not exceed 30% of the design tolerance of the measured part.

Multi-stylus-test[1]The LC15Dx multi-stylus test accuracy of 3,9µm (0.00015in), often referred to as “real-world-accuracy”, mirrors the accuracy expected when using a CMM fitted with an indexing head and tactile probe. Once again the Nikon scanner multi-stylus test mirrors, as closely as possible, the equivalent ISO 10360-5 MPEAL indexing head and tactile probe multi-stylus test, as shown in the diagram to the left. The multi-stylus test determines the level of measurement uncertainty when measuring Location using multiple probe head positions.

Enhanced Scanner Performance (ESP3)

Laser Scanning without the hassle

Nikons unique ESP3 technology maintains accuracy, speed and data quality by intelligently adapting the laser settings for each measured point in real-time.

A wider range and mixture of surface materials, finishes, colours and transitions can be measured more efficiently without user interaction, manual tuning and part spraying, including small and fragile parts.Laser-scanner-adaptation[1]

Unwanted reflections from very shiny surfaces are neutralised by an advanced software filter while changes in ambient light are absorbed by a high grade daylight filter.

For the most extreme parts and materials manual laser settings are also available should they be necessary.

High speed

Measurement at the speed of light!

Measuring the entire part or complete features, without compromising on throughput, is not a problem when you can measure 70,000 points at the speed of light every second.3D-laser-triangulation[1]

As the Nikon LC15Dx passes over the workpiece, a laser line is projected onto the surface. The line contains hundreds of measurement points spaced 0.022mm (0.0008) apart. Triangulation between the laser, workpiece and sensor is used to determine the position of the workpiece in 3D space. The user has full control over the amount of measured data by varying the distance between the laser lines.

Suitable for high precision parts and small geometry

The LC15Dx provides significant benefits for a wide variety of high precision parts and geometry, including small details, semi-rigid parts and more demanding materials.

Multi-sensor CMM

Combine laser scanning with a tactile probe

In some cases a single sensor technology is insufficient for measuring all the features.

The LC15Dx can be combined with an optional tactile probe to create a versatile multi-sensor CMM. Depending on the application both technologies can be used independently or together in the same inspection program.Multi-sensor-CMM_large[1]

Fully automatic sensor changing is possible with the addition of an optional change and storage rack which is mounted on the table of the CMM.